iklan1

Perhatian : Pelancar roket air dan CD powerpoint slide show boleh di tempah sekarang….Sila hubungi saya untuk maklumat harga dan penghantaran - 0137394353/azmi.jaaffar@yahoo.com.my *******Bermula 1/1/2017 harga pelancar adalah RM150 tidak termasuk kos penghantaran, harap maklum .....Tempahan untuk tahun 2017 dibuka sekarang....

Jumaat, 31 Disember 2010

Salam

Selamat tahun baru dan selamat kembali semula ke sekolah......dengan azam yang baru. Insyallah pada tahun 2011 nanti saya akan cuba untuk menerbitkan artikel2 baru berkaitan roket air setelah sebulan rehat dikampung halaman.......jadi rajin2 lah untuk singgah menjenguk ke laman blog ini ya......

Salam 1 Malaysia

Salam kepada semua pelawat2 yang telah singgah di laman blog ini. Untuk makluman semua saya masih lg mempunyai 8 unit pelancar roket air yang telah siap sedia untuk penghantaran. Bayaran tunai  boleh dibuat  melalui akaun maybank. Sila hubungi saya untuk maklumat lanjut....


tq

Isnin, 22 November 2010

SELAMAT BERCUTI KEPADA PELAJAR2

Selamat bercuti diucapkan kepada semua pelajar dan selamat menduduki peperiksaan SPM bg pelajar2 Ting 5 yang akan bermula esok. Doa cg semoga semuanya dapat menjawab peperiksaan dengan baik dan semoga mendapat keputusan yang cemerlang nanti.....

Jumaat, 12 November 2010

KEPUTUSAN PERTANDINGAN PTPR UNIVERSITI MALAYA 2010

Pelajar teruja pelancaran teknologi roket

Dr. Mustafa Din Subari (dua dari kiri melancarkan roket sebagai gimik pelancaran.
--------------------------------------------------------------------------------

TEKNOLOGI pelancaran roket merupakan sebahagian daripada ilmu sains angkasa yang mempunyai terjemahan cukup luas. Ia merujuk kepada pemahaman aplikasi hukum-hakam alam yang khusus untuk membolehkan roket meneroka ruang angkasa dengan stabil.

Membuka peluang mendedahkan golongan muda memahami ilmu tersebut, Agensi Angkasa Negara (ANGKASA) bersama Bahagian Kokurikulum dan Kesenian, Kementerian Pelajaran serta Universiti Malaya (UM) telah menganjurkan Pertandingan Teknologi Pelancaran Roket (PTPR) Peringkat Kebangsan 2010 bermula 26 hingga 28 September lalu.

Memasuki tahun kelapan penganjuran, PTPR merupakan salah satu aktiviti merentas kokurikulum dengan penyertaannya dibuka kepada semua pelajar sekolah seluruh negara berusia antara 12 hingga 16 tahun.

Ia bermula sebagai projek perintis pada tahun 2003 di mana pertandingan tersebut ketika itu melibatkan sekolah-sekolah dari seluruh Kuala Lumpur dan Selangor sahaja.

Hanya pada tahun 2004, ia dibuka kepada penyertaan sekolah-sekolah di seluruh negara dengan sekolah yang bergelar juara akan mewakili Malaysia ke pertandingan yang sama di peringkat rantau Asia Pasifik.

Menurut Ketua Pengarah ANGKASA, Dr. Mustafa Din Subari, pertandingan tersebut dilihat mampu membina modal insan terbaik sebagai penyumbang kepada pembangunan negara pada masa depan.

‘‘Ini kerana melalui pertandingan ini, para pelajar diberi pendedahan dan pemahaman mengenai bidang sains angkasa secara praktikal selain memupuk semangat berpasukan serta bersaing secara sihat.

‘‘Selaras dengan objektifnya untuk membudayakan pendekatan kreatif dan inovatif di kalangan pelajar, pertandingan ini juga mempunyai matlamat menggalakkan mereka melakukan kaedah kajian dan penyelidikan (R&D) dalam setiap pelaksanaan projek.

‘‘Ia secara tidak langsung memberi peluang kepada mereka mengaplikasikan segala teori dan konsep yang dipelajari di dalam kelas,’’ katanya ketika berucap pada perasmian penutup PTPR di UM, Kuala Lumpur, baru-baru ini.

Dalam usaha menjadikan bidang sains angkasa sebagai sesuatu yang menyeronokkan di samping menguji kemahiran peserta, setiap tahun, pertandingan tersebut cuba mengetengahkan cabaran yang berbeza.

Selain dua kategori yang dipertandingkan sebelum ini iaitu roket sasaran dan payung terjun, turut diperkenalkan kategori terbuka bagi memberi peluang kepada setiap pasukan mencipta roket dengan rekaan dan kreativiti sendiri tanpa melibatkan sebarang syarat.

Hari pertama pertandingan menyaksikan para peserta di beri masa selama enam jam untuk menyiapkan roket dan payung terjun menggunakan material yang disediakan.

Roket-roket itu kemudiannya akan disimpan tanpa membenarkan pelajar membuat sebarang modifikasi sehingga ia dilancarkan pada hari kedua dan ketiga.

Bagi kategori roket sasaran, para pelajar dikehendaki mencipta roket air mengunakan botol minuman berkarbonat 1.5 liter dengan mengaplikasikan teknik tekanan udara.

Melalui ciptaan itu, kreativiti para pelajar diperlukan untuk meminimumkan daya geseran agar roket dapat dilancarkan dengan sempurna ke ke sasaran paling jauh menggunakan alat pelancar.

Untuk kategori payung terjun pula, setiap pasukan perlu mencipta payung terjun dengan menggunakan kombinasi bahan seperti botol dan juga plastik.

Sebanyak 16 pasukan bertanding bagi kategori roket sasaran, 16 pasukan menyertai kategori payung terjun dan 10 pasukan kategori terbuka bagi merebut Piala Menteri Sains, Teknologi dan Inovasi.

Setiap pasukan akan diwakili oleh dua orang pelajar dan seorang guru pengiring daripada sekolah-sekolah di 13 negeri dan tiga wilayah persekutuan.


Pasukan yang menang bakal diterbangkan ke Melbourne, Australia pada 19 hingga 22 November depan untuk menyertai Pertandingan Roket Air di peringkat Asia Pasifik anjuran Asia Pasific Regional Space Agency Forum (ARPSAF).

‘‘Kita mengharapkan agar pasukan yang menang akan terus membuat persiapan dari segi kemahiran, pemahaman, aplikasi teori matematik dan sains serta semangat daya saing yang tinggi demi memastikan Malaysia menjadi juara,’’ jelasnya.

Rabu, 10 November 2010

Keputusan pertandingan Teknologi Pelancaran Roket Parlimen Pagoh

Alhamdulillah, pada hari ini sekali lagi pasukan SMK Maokil dapat menunjukkan kejaguhan dalam acara teknologi Pelancaran Roket Parlimen Pagoh yang berlangsung di SMK Felcra Bukit Kepung.
Hanya 2 kategori roket sahaja yang dipertandingkan, kategori 'payload' tidak dipertandingkan hanya sebagai acara pertunjukkan sahaja.

SMK Maokil telah berjaya menjadi johan dalam acara roket sasaran (bulatan ke 2 iaitu diameter bulatan 3 m )
Keseluruhan : Johan keseluruhan

Tahniah cg ucapkan kepada peserta2 SMK Maokil yang berjaya mengharumkan nama sekolah. Teruskan usaha anda untuk berjaya diperingkat yang lebih tinggi lagi..........

Keputusan :
Roket sasaran : 2 drpd 7 buah sekolah berjaya mensasarkan roket air ke dalam bulatan (diameter 9 m)

Roket Paracut : 4 buah sekolah shj yang berjaya mengembangkan paracut masing2.
Banyak lagi penambah baikkan yg perlu dilakukan oleh pelajar2 bagi menghasilkan roket air yang menepati sasaran dan juga yang akan berjaya mengembangkan paracut masing2.
Gambar semasa perbengkelan roket air dan semasa pertandingan berlangsung.....

Selasa, 9 November 2010

Pertandingan Teknologi Pelancaran Roket Peringkat Perlimen Pagoh

Selamat bertanding diucapkan kepada pelajar2 yang akan menyertai pertandingan pelancaran roket perlimen Pagoh pada 10/11/2010.
kategori yang akan dipertandingkan ialah roket sasaran (markah -30%), roket payung terjun (markah-30%), roket payload (markah -40%)
Sebelum pertandingan satu perbengkelan roket akan diadakan, kemudian pelajar2 akan diberikan masa untuk menyediakan roket masing2.

Gambar2 pertandingan akan dimuatnaik selepas pertandingan berlangsung. sila kembali ke laman blog ini semula untuk melihat gambar2 semasa pertandingan b erlangsung.

Isnin, 25 Oktober 2010

Gambar semasa Gimik Perasmian Penutup Karnival IKTIRAF 2010

Alhamdulillah, program pelancaran roket h2o sempena gimik perasmian penutup Karnival IKTIRAF 2010 berjalan dengan lancar. Tahniah cg ucapkan kepada 6 orang pelajar yang terpilih untuk melancarkan roket pada hari tersebut..

walaupun roket payung terjunnya yang dibuat daripada kain bendera kurang cukup tinggi meluncur ke udara tetapi ketiga-tiga nya dapat mengembangkan payungnya sebagaimana yang diharapkan......ini lah bahagian yg cukup cg risaukan takut payung tak terbuka semasa pelancaran....

Sekali lagi tahniah untuk semua yang terlibat...



Terima kasih,

Ahad, 24 Oktober 2010

Gimik Perasmian Penutup Program IKTIRAF 2010

Pada hari ini kelab Roket H2O SMK Maokil telah dijemput untuk membuat persembahan semasa perasmian penutup Karnival IKTIRAF (Ikatan Hati Warga Felda) anjuran belia wilayah Segamat di padang awam Maokil.



Apa yang kita rancangkan ialah VVIP akan menarik tali yang disambungkan kepada pelancar semasa acara perasmian penutup dan ada lagi gimik lain....nak tengok datang maokil...heheheh3x

Berdebar2 rasanya nie takut apa yang dirancangkan tidak berjalan dengan lancar...cg harap 6 orang peserta yang terpilih dapat menjalankan tugas mereka dengan jayanya

hidup kelab roket h2o....anda semua boleh lakukan....


Video pertandingan pelancaran roket h2o - aktiviti selepas peperiksaan PMR 2010

Berikut merupakan video pelancaran roket sasaran dan payung terjun semasa pertandingan berlangsung.
harap bersabar...ada masalah utk dimuatnaik, nanti kalau dah dpt muatnaik cg akan letak kat sini.

video 1 roket sasaran

Video 2 roket payung terjun


video 3 roket payung terjun

gambar2 slide show semasa pertandingan berlangsung

Sabtu, 23 Oktober 2010

MEKANISMA AKTIF PEMBUKAAN PAYUNG TERJUN MENGGUNAKAN BELON UDARA

(Mekanisma ini di hasilkan melalui pembacaan pengarang daripada artikel yang dihasilan oleh Gary Ensmenger)

Langkah 1Sediakan muncung roket h2o anda daripada potongan botol minuman bergas 1.5 L

Langkah 2
Tiupkan satu belon udara agar saiznya muat untuk dimasukkan ke dalam muncung roket h2o yang anda sediakan tadi

Maklumat penting – Bahagian tepi muncung perlu dilubangkan iaitu pada bahagian bawah daripada kedudukan belon. Ini akan memberikan pengudaraan yang cukup bagi muncung untuk terpisah secara bebas pada puncak ketinggian, juga akan menghasilkan tekanan rendah di dalam muncung kerana udara akan disedut keluar semasa pelancaran dan akan melambatkan muncung daripada terpisah awal .

Berapa banyak lubang perlu dihasilkan bergantung kepada saiz dan bentuk belon anda, di sini memerlukan anda membuat eksperimen untuk menghasilkan satu muncung yang benar2 akan terpisah daripada badan roket ketika sampai kepuncak ke tinggian.


Langkah 3
Masukan belon tadi seperti gambar di bawah


Langkah 4
Lipat payung terjun yang akan di masukkan ke dalam muncung roket h2o anda dan letakkan di bahagian yang kosong di bawah belon yang anda masukkan tadi.


Langkah 5
Roket h2o anda siap sedia untuk dilancarkan, Apabila roket h2o anda dilancarkan muncung akan tertekan ke bawah. Apabila roket h2o mencapai puncak ketinggian belon akan kembali semula ke bentuk asal dan akan menolak muncung ke atas. Ini akan menyebabkan muncung akan terpisah daripada badan roket h2o anda. Akhirnya payung terjun akan mengembang di udara.



Selamat mencuba........ jika berjaya hantar kan gambar2 utk dikongsi dengan pembaca2 yang lain.....

Khamis, 21 Oktober 2010

Keputusan Penuh Pertandingan Roket H2O tertutup Menengah Rendah SMK Maokil dan Jemputan Sekolah Rendah Tahun 2010

Tarikh Pertandingan : 20 - 21 Oktober 2010

Tahniah kepada pemenang......pelajar2 smk maokil dan pelajar2 SK maokil 2

Jarak sasaran yang di pertandingkan ialah 90 m
Kategori Roket Sasaran: (Jarak dari pusat bulatan)
1. Kumpulan Bedal je....(2.94m)
2. Kumpulan Maokil 2B (SK Maokil 2)...(3.07m)
3. Kumpulan Upworld....(3.54m)
4. Kumpulan carlie Crew...(3.58m)

Kategori Roket Payung Terjun
1. Kumpulan islamiah....(1 minit 15.87 saat)
2. Kumpulan AK dan AC...(43.81 saat)
3. Kumpulan Maokil 2A (SK Maokil 2)...(39.06 saat)
4. Kumpulan Bedal je....(35.12 saat)

Johan Keseluruhan Pertandingan Roket H2O 2010
Kumpulan Bedal je......
tahniah, hadiah akan diberikan apabila hadiah yg telah ditempah oleh GPK sampai ke sekolah

Kepada yang tidak berjaya, boleh cuba lagi pada tahun hadapan...insyallah pertandingan akan diadakan sebelum Festival Sains dan Teknologi peringkat daerah berlangsung....

Gambar2 semasa pelancaran roket h2o- aktiviti selepas PMR 2010

Alhamdulillah, pada tahun ini sekali lagi pertandingan roket h2o bagi pelajar2 menengah rendah telah berjaya dilangsungkan. Pelajar2 menengah rendah telah berjaya menghasilkan roket h2o yang dapat terbang melebihi jarak 100m.

(Nak lihat Gambar2 yang lain...klik di sini)


Sebahagian peserta perempuan yang menyertai pertandingan roket h20 2010

Yang berbaju gelap tu....yg ayu....tuuu ..juru gambar semasa pertandingan berlangsung...tq ika..

takut nak tengok....sampai sakit leher.....

Begitu tekun.....jangan melepasi 60psi yaa.....



Cg Aizawani dan gang sorak..........tq

Semasa pertandingan ini diadakan, kami juga telah menjemput 2 pasukan terbaik SK Maokil 2 semasa perbengkelan roket tempoh hari untuk sama2 terlibat dalam pertandingan roket menengah rendah

 Cg rosli and the gang....

Gang sekolah rendah SK maokil 2 dan juga....baju kuning harimau (Cg Ayob- tq sbb tolong menguruskan pertandingan) dan baju merah kat tgh (penganjur) 

Keputusan pertandingan roket menengah rendah 2010 cg akan upload kan sedikit masa lagi harap bersabar....ya.

Selasa, 19 Oktober 2010

Perbengkelan Roket H2O di SK Maokil 2

Salam 1 Msia,

Tahniah cg ucapkan kepada peserta2 bengkel Roket h2o SK Maokil 2 yang telah berjaya menghasilkan 2 roket h2o iaitu roket sasaran dan roket paracut bagi setiap kumpulan dalam jangka masa 3 jam perbengkelan. Tidak lupa juga ucapan penghargaan kpd 9 orang pelajar ting 3 dan 4 smk maokil yang menjadi fasilitator semasa perbengkelan tersebut berlangsung.

(gambar)  http://picasaweb.google.com/roketh2o/BengkelSKMaokil22010#5529761147618267458

Secara umumnya peserta2 perbengkelan pada tahun ini menunjukkan minat yang tinggi untuk menyiapkan roket h2o masing2 dengan dibantu oleh fasilitator yang begitu bersungguh membantu adik2 sekolah rendah.

Pada akhir sesi perbengkelan sebanyak 16 roket h2o telah berjaya disiapkan iaitu 8 bagi kategori roket h20 sasaran dan 8 lagi bagi ketagori roket h2o payung terjun. Semasa pelancaran roket dilakukan kesemua roket sasaran yang dihasilkan berjaya melepasi jarak 80 m dan bagi roket payung terjun hanya 2 roket sahaja yang bermasalah tidak berjaya mengembangkan payung terjun di udara. Ada satu kumpulan pelajar yang berjaya menghasilkan roket payung terjun yang terbang di udara menghampiri 1 minit.

Tahniah cg ucapkan kpd semua pelajar yang terlibat dan juga fasilitator.

Tahniah juga diucapkan kepada Cg Rosli dan Cg Haslizan SK Maokil 2, penyelaras program selepas peperiksaan UPSR kerana menganjurkan program ini. Semoga semuanya akan mendapat manfaat. Tahun depan jika ada permintaan cg akan kembali semula ke SK Maokil 2 untuk perbengkelan roket bagi tahun ke 3, Insyallah.....

Kepada 3 pasukan Terbaik SK Maokil 2 bersedia untuk pertandingan roket h2o kali ke 2 di padang SMK Maokil pada petang hari rabu 20/10/2010 dan pagi khamis 21/10/2010.

Isnin, 18 Oktober 2010

Payung Terjun lipatan Tepi

Salam 1 M'sia

Hari ini saya ingin memperkenalkan satu cara lain bagi menghasilkan payung terjun bagi roket air anda iaitu payung terjun lipat tepi.
Payung terjun lipatan tepi adalah satu kaedah yang paling senang untuk menghasilkan payung terjun. Kaedah ini paling sesuai dilakukan bagi mereka2 yang baru menceburi dalam bidang roket air. Berikut merupakan langkah2 untuk menghasilkannya.

Langkah 1
Sediakan pastik sampah yang besar dan nipis yang berbentuk segiempat sama.

Langkah 2
Lipat pada setiap penjuru plastik sampah tersebut dan gamkan lipatan tersebut menggunakan gam yang sesuai seperti gambarajah di bawah.

Langkah 3
Apabila gam sudah kering, Pasangkan tali bagi setiap penjuru yang telah dilipat tadi


 
Hasilnya



Selamat mencuba.....

Khamis, 14 Oktober 2010

Perbengkelan Roket H2O bagi pelajar2 ting 3 2010

Salam 1 malaysia.

Hari yang sungguh memenatkan melayan kerenah 58 orang pelajar2 Tingkatan 3 yang terlibat dengan bengkel Roket H2O (Aktiviti selepas peperiksaan PMR). Walaubagaimana pun dalam jangka waktu 8 pagi hingga 11.45 pagi Pelajar2 tersebut telah dapat menyiapkan 2 jenis roket yang dibengkelkan kepada mereka iaitu roket h2o sasaran dan roket h2o payung terjun.

Pada pukul 12 tgh hari, aktiviti pelancaran roket yang telah dihasilkan di padang bola jaring sekolah telah berlangsung. Semua pelajar bergembira dengan hasil ciptaan mereka walaupun hanya 1 daripada 8 kumpulan pelajar yang telah berjaya mengembangkan payung terjun bagi roket mereka....yang lain semua roket dan payung terjun menjunam ke bumi dengan dasyat sekali......

Bagi roket sasaran....sebahagian besar kumpulan pelajar dapat mensasarkan jarak melebihi tiang gol bola sepak sekolah (70-100 m). Walaupun dalam keadaan roket yang kurang stabil dan berpusing2.
Pelajar2 diberi masa untuk mengadakan latihan dan memperbaiki prestasi roket H2O masing2 selama seminggu sebelum pertandingan berlangsung iaitu pada hari khamis 21 Oktober 2010 nanti. 

Powerpoint slide show : How to build simple water rocket // persembahan power point : Bagaimana membina roket air yang ringkas

POWER POINT SLIDE SHOW INI TELAH SEDIA UNTUK DI MUAT TURUN, SILA BUAT PEMBAYARAN JIKA BERMINAT.

(Special /khas)

For Teachers or water rocket fans //
Utk guru2 atau peminat2 roket air

Download power point show to know how to build a simple water rocket //
Muat turun persembahan 'powerpoint' di bawah untuk mengetahui bagaimana membina roket air

Part 1 (new)/Bahagian 1 terkini  - 19 slide

Part 2 (new)/ Bahagian 2 (samb) terkini - 16 slide

Makluman terkini

Part 3 (new)/Bahagian 3 (samb) terkini - 19 slide

Part 4 (new)/Bahagian 4 (samb) terkini - 13 slide

Part 5 (new)/Bahagian 5 (samb) terkini - 21 slide

Part 6 (new)/Bahagian 6 (samb) terkini - 21 slide

Part 7 (new)/Bahagian 7 (samb) terkini - 30 slide

Part 8 (new)/Bahagian 8 (samb) terkini - 7 slide

Part 9 (new)/Bahagian 9 (samb) terkini - 17 slide

be happy making your own water rocket // selamat menghasilkan roket h2o anda sendiri...

Nota:

Anda hanya boleh memuat turun bahagian 1 & bahagian 2 shj secara percuma, bhg 3 - bhg 8 memerlukan sedikit sumbangan anda sebanyak RM30 (harga promosi) bg mempertingkatkan laman blog ini, harap maklum.

Harga ini akan dinaikkan setelah powerpoint slide show ini berjaya di muat turun oleh 10 orang. Jadi bertindaklah sekarang untuk mendapatkan harga promosi ini.

Dengan RM30 tersebut anda bukan sahaja akan dapat memuat turun 9 bhg powerpoint slide show tetapi anda juga akan memperolehi 3 buah ebook(b. Inggeris) yang dikarang oleh pakar secara percuma // (for free) berkaitan dengan roket air iaitu:

1. Introduction to water rocket // Pengenalan kpd roket air ( 47 halaman / format pdf )

2. Water rocket handbook // Buku nota roket air ( 137 halaman / format pdf)

4. Model Rocketry Technical manual (16 halaman / format pdf)

Powerpoint shows ini sesuai digunakan oleh guru2 penasihat kelab rekacipta/roket sekolah untuk perbengkelan kepada ahli kelab / pelajar2 tentang asas bagaimana menghasilkan roket H2O ataupun untuk persediaan pelajar2 kepada pertandingan teknologi pelancaran roket H2O. Terdapat lebih kurang 163 slide yang disertakan dengan gambar-gambar dan penerangan ringkas bagi setiap gambar.

Tajuk2 yang dibincangkan dalam power point slide show ini ialah seperti di bawah:

1. PENGENALAN

2. OBJEKTIF

3. KONSEP / TEORI

4. BAGAIMANA MEMBINA ROKET H2O
    a. PERALATAN
    b. MUNCUNG (NOSE CONE)
    c. BADAN
    d. SAYAP
    e. REKABENTUK ROKET SASARAN / JARAK JAUH
    f. ROKET PARACUT / PAYUNG TERJUN
    g. PELANCAR ROKET RINGKAS

4. LANGKAH2 KESELAMATAN

5. TIP UNTUK PERTANDINGAN (bahasa Inggeris)

 
Anda tidak perlu membazirkan masa menyediakan bahan dan hanya perlu download powerpoint show dan tayangkan kepada peserta. Powerpoint shows ini dibuat dengan menarik untuk memberi kefahaman kpd peserta2 yang langsung tiada asas kepada roket air. Anda juga akan memperolehi 3 buah ‘ebook’ (english) secara percuma berkaitan dengan roket h2o yang dihasilkan oleh pakar yang sudah lama membabitkan diri dengan ‘water rocket’. Buku ini tiada dijual dipasaran dan hanya boleh diperolehi dilaman blog ini sahaja.

Terima kasih

Ahad, 10 Oktober 2010

physics demonstrations

Found these physics demonstrations that include water rocketry physics.



Newton's 3rd law Part 1:

http://www.youtube.com/watch?v=PZVhhB12QXI


Newton's 3rd law Part 2:

http://www.youtube.com/watch?v=X95Yk9y5Pqc


Center of Gravity Part 1:

http://www.youtube.com/watch?v=vYbBakL9Cj8


Center of Gravity Part 2:

http://www.youtube.com/watch?v=3CBuoe9iCQI


So much to look at, so little time.

Selasa, 28 September 2010

Water Rockets! East Texas Active Deployment System

special thanks to the author for this good article

This system deployed 4 out of 4 times, including on one seriously arced flight path. It was very windy, which hampered evaluation of some aspects of the system. One question is, does the weight imbalance cause instability? Since I had to launch into the wind (launcher angled) it could have masked a tendency to veer in the direction of the weighted side. If so, a fixed balancing weight could be added to the other side of the rocket. Version two of this system will be inside the rocket, which will help locate the weight close to the center. I will test this same system mounted on a 6 liter rocket Sunday as many times as I can to gain more experience with it.

This was a mock-up, that became a prototype, and then was put into use as test one. It needs to be rebuilt and refined, made lighter in weight, and adapted to other size rockets. I am repairing this model tonight for more flights Sunday. I am going to put it on a 6 liter rocket to see if it works up high as well as it did at 250 ft. or so. The Fritos can is just a holder.

This is the keyhole. The shape of it will control when the system activates. It is a Fuji 35mm film can, cut down and PLP glued in place.


1. Launch position


2. Activation at this angle


This pic shows the shaft, horizontal across the body. The lever and weight actuator are on the left, release pin and trigger on right.

The shaft, crossbar and pin. The shaft is a piece of styrene, like a model parts "tree", the crossbar and pin are paper clip material. The 35mm film can lid locates the shaft and allows easy removal of the mechanism for adjusting. The spring acts to retract the shaft and pin.


3. Pin retracted, rubber band web pushing nosecone up.

4. Rubber band pulling nosecone off to one side, accordian folded trash bin liner parachute springing out.


5. Deployment!

 
This pic shows the weight and lever actuator.

At launch this is vertical, as the rocket turns over (aided by the weight itself) the weight remains in place as the rocket body rotates around it. When the rocket reaches 35 to 40 degrees right or left of vertical, the shaft has rotated enough to retract. This is tunable by the sizing of the keyhole.


A view of, from left, the lever arm and weight, the spring retainer and spring, the 35mm lid, the crossbar, and the pin. This is in the retracted position, after apogee.

In pictures 3 and 4 to the left, you can see the lips or flanges that allow the nose cone to be secure on the rocket at launch without danger of being jammed at apogee. The lower lip is the rim of a margarine tub, I got the idea for that from one of the Web Ring pages, the upper flange that mates with the lower one ifs cut from a 32 oz. "big gulp" type plastic cup the local convienence store had. Thanks to Bob "Rocket" Brown for noticing that it fit my guppy nosecone so nicely.

Also visible is the Frito can lid that I glued in the top of the sleeve, just above the film can, to act as a bulkhead and parachute platform. The parachute is attached to this with a swivel.

This pic shows the inside of the nosecone, the trigger, and the web of rubber bands. A couple of important points:


The trigger is a piece of cable tie ground smooth on both sides.

I put a liner sheet cut from a trash bin over the chute to keep it from getting caught in the web of bands.

The white section fro mthe Big Gulp cup is very important, because when you cut the guppy nosecone from the 2 liter bottle, the edge of it is flimsy and will not locate on the rocket correctley. It also tends to pinch and create friction possibly preventing seperation. The relationship between the margarine tub lips and the big gulp rim is a nice "loosely tight" fit.

Testing Sunday, June 25

I eagerly anticipated several hours of glorious rocket launching today. The new parachute system was mounted on a 6 liter body and ready to go. I filled the rocket, pressurized it to 100 PSI, and launched. It went 10 feet in the air, rolled over and smashed into the ground! WHAT? Here's what I think happened: I was using a hose connecting the launcher to a faucet to fill the rocket on the launcher. I remember filling it to approx. 35% and pressurizing. I forgot that when you fill the rocket on the launcher, the air pushes the water that is in the launcher into the rocket too. Since I have a 36" stand pipe and about 24" of tubing in the launcher, that is a lot of extra water. So a stupidly classic overfill and the parachute system is wasted! Oh well, on to the next revision . . .

Pertandingan Teknologi Pelancaran Roket Peringkat Parlimen Pagoh

Salam 1 M'sia

Maklumat terkini : Pertandingan Teknologi Pelancaran Roket Peringkat Parlimen Pagoh akan di adakan selepas peperiksaan akhir tahun iaitu pada 10/11/2010 bertempat di SMK Felcra Bukit Kepong (kalau tak silap...nanti cg sah kan semula)

3 Kategori roket akan dipertandingkan iaitu
a) Roket sasaran (30%)
b) Roket paracut (30%)
c) Roket payload (40%)

Cg akan upload kan syarat2 pertandingan sedikit masa lagi untuk rujukan pelajar2 sekolah menengah yang berada di dalam kawasan Parlimen pagoh. Kepada sekolah2 yang akan mengambil bahagian boleh membuat persediaan daripada sekarang. Jumpa semasa pertandingan nanti...... 

Isnin, 20 September 2010

Pertandingan Teknologi Pelancaran Roket Peringkat Pagoh

Maklumat terkini, pertandingan teknologi pelancaran roket peringkat perlimen pagoh akan di adakan sedikit masa lagi. Kepada sekolah2 menengah dalam parlimen pagoh sila bersedia untuk pertandingan tersebut. Saya akan maklumkan semula tarikh tersebut bila pertandingan akan di adakan. terima kasih

Jumaat, 17 September 2010

Selamat Kembali Semula Ke Sekolah

Assalamaualaikum & Salam Satu Malaysia.

Saya ucapkan selamat kembali semula ke sekolah kepada semua pelajar. Bagi pelajar2 ting 3 dan 5 selamat menduduki peperiksaan PMR dan SPM yang tak berapa lama lagi....

Rabu, 8 September 2010

Experimental Design Diagrams

Name: Alex, Josie, and Kendra HR: 7

Bottle Rockets...

The Distance the Rocket goes Depends on The Amount of Water

Amount of Water (cups)Distance of Rocket (in meters)
Trial 1Trial 2Trial 3AVERAGE Distance (m)
1 (Controlled)46424544.3
265635862
354485151


Source: Kendra, Alex, and Josie May 2009

HYPOTHESIS:
If we have more water, then it will go the farthest, because it will have more pressure and more weight.

A. List 5 controlled variables.

The rocket, the type of launch pad, the angle of the launch, the amount of water in the nose cone (1 cup), the time, the number of wings (4)...

INDEPENDENT VARIABLE: Amount of water in the bottom/body of rocket

DEPENDENT VARIABLE: Distance of rocket.

PROCEDURES:

1. Make the rocket.

2. Change amount of water in the body and record.

3. See if hypothesis is correct.

Write a one sentence summary of your experiment results here: Our hypothesis was partially correct. I think there were many errors with the wind but more water makes it go farther.

Selasa, 7 September 2010

The Effect of Fin Area and Amount vs. Altitude of Water Rocket

Special thanks to the author for this experiment.....

PURPOSE

The purpose of this experiment was to determine if the area of the fins and the number of fins would affect a rocket’s performance or altitude, which the rocket reached. I became interested in this idea while pondering if number of fins would affect the altitude of rockets that I launch, I also enjoy rocketry and thought it would be fun to put my question to the test. The information gained from this experiment can lead scientists and rocketers alike to make aerodynamic fins and to increase the performance of rockets without adding more fuel or using a larger engine.

HYPOTHESIS

My first hypothesis was that the rocket that contains 3 fins with a small surface area would reach the highest altitude. I based my hypothesis on information and data gathered from the Handbook of Model Rocketry and World Book Encyclopedia that summarizes that drag should be reduced by surface area.

My second hypothesis was that the rocket situated with 5 large fins would have the lowest altitude. I based my hypothesis on information and data gathered from the Handbook of Model Rocketry and World Book Encyclopedia that summarizes that drag should be reduced by surface area.

EXPERIMENT DESIGN



The constants in this study were:

* The type of rocket used

* The size of the pop bottle

* The shape of the pop bottle

* The volume of the pop bottle

* The amount of water in the pop bottle

* The pressure inside the pop bottle

* The shape of the rocket

* The recovery device

* The shape of the rocket’s nose cone

* The height of the rocket

* The width of the rocket

* The weight of the rocket (may change a little due to number and size of fins)

* The same launcher

* The same launch pad

* The same launch device

* The same weather conditions

* The shape of the fins so the fins are proportional

* The airfoil of the fins (Square shaped airfoil)

The manipulated variable was the number of fins (3, 4, and 5) and the area of the fins.

The responding variable was the altitude of which the rocket reached at apogee. To measure the responding variable, Estes, Alti-trak was used to measure the altitude of the rocket at apogee in meters.

Below is a table of the different treatments.


3, small fins 4, small fins 5, small fins

3, medium fins 4, medium fins 5, medium fins

3, large fins 4, large fins 5, large fins

MATERIALS



QUANTITY ITEM DESCRIPTION

1 Pitsco pop bottle Water Rocket

N/A Water

1 Pitsco launcher

1 Sheet of 1/16" by 3" by 36" Balsa wood

1 Sheet of 1/16" by 6" by 36" Balsa wood

1 Estes Altitrak (a rocket altitude measuring device)

1 X-Acto Knife

1 Cool Melt Glue Gun

1 Bottle of White or yellow Glue

1 Tube of plastic cement

N/A Sand paper

1 Pitsco Pressure pump

PROCEDURES

1. The first step is to construct the rocket you are using, but don’t add any fins yet. Mark on the rocket where the 3, 4, and 5 different fins will be (use one mark for a central point for the other marks). Then I labeled them as follows:

The 3 fins marks are A, B, and C these fins are spaced 120 degrees apart

The 4 fins marks are C1, C2, C3, and C4 these fins are spaced 90 degrees apart

The 5 fins marks are 1, 2, 3, 4, and 5 and these fins are spaced 72 degrees apart.

Construction Tip: for porous materials like paper, cardboard, and balsa wood put glue on the material then let it sit for a while to let the glue sink into the pours. Then put on more glue and fit the pieces together.

2. The next step is to make a template of the different fins you are using. You can make the templates by cutting out cardboard that is the same sizes as the fins.

3. The next step is to trace an outline of the fins on the sheet balsa wood with the templates. The fins can be any shape you want, but make sure all fins are the same size and proportional. I used a trapezoid shaped fin.

4. Then cut out the fins with an X-Acto Knife.

5. Next take the fins of the same size and hold them even in your hand. Sand all edges (not the sides) so the rough edge is removed and all of the fins are the same precise size. Caution: Don’t sand the fins too much because you will change their size the more you sand them.

6. Next step is to glue on 5, large fins to the rocket with the cool melt glue gun. Construction Tip: Use the glue sparingly because you want to easily remove the fins from the rocket to put on new fins.

7. Now launch the rocket 3 times and record the data. Note: Follow instructions provided with the kit on how to launch the rocket. Note: Use the exact same amount of water for each launch.

8. Cut off the fins of the rocket with the X-Acto Knife and sand the root where the fin was glued so that the body tube was like nothing was ever glued to it.

9. Repeat steps 7-9 for all of the fins and make sure the weather conditions are approximately the same for all launches.

RESULTS

The original purpose of this experiment was to determine if the difference in the area and number of fins would change the altitude of the rocket. The results of the experiment were the rocket with 4 medium fins had the highest average altitude and the rocket with 5 large fins had the lowest average altitude.

CONCLUSION

My first hypothesis was that the rocket that contains 3 fins with a small surface area would reach the highest altitude. The results indicate that this hypothesis should be rejected. My second hypothesis was that the rocket situated with 5 large fins would have the lowest altitude. The results indicate that this hypothesis should be accepted. Because of the results of this experiment, I wonder if the reason the rockets that had 3 fins and the rocket that had 4 small fins didn’t go higher than the rocket with 4 medium fins is because the area didn’t matter from that point on and the stability of them wasn’t as good as the rocket with 4 medium fins.

If I were to conduct this project again I would have more trials for more accurate data, I would try to find a better and more accurate way to measure the altitude, and then if I find a better way to find the altitude I could use solid fuel rockets.

Research Report

Rocket

A rocket is an engine that is used to propel a vehicle at an extremely fast speed. A rocket engine the same size as a medium sized automobile engine will produce almost three thousand times the power. Rockets can range from just a couple feet tall (61 centimeters) to almost 380 feet (115 meters). Rockets are called chemical rockets if they burn fuel to produce their power. There are some experiments with rockets that use heat to make their fuel expand causing thrust. Although chemical rockets do burn fuel rapidly they produce an extremely large amount of thrust. The Saturn 5 rocket engine used 1,018,181.8 gallons (3,853,100 liters) of fuel to power itself for just five minutes. The temperature in some rockets can reach 6,000 degrees Fahrenheit (3316 degrees Celsius) or more!

The main purposes for which people use rockets today are research, space travel, and military strikes with warheads. Ancient civilizations used rockets with explosives attached to blow up enemy encampments. Rockets lately have been used for researching space as well as to transport warheads on military missiles. The use of rockets for exploration and research has been during only the past 50 years and has opened a new window for exploring space. The satellites that rockets carry into space can take pictures, record data of the universe, and track weather.

Rockets work on one of Newton’s laws, "For every action there is an equal and opposite reaction". In this case rockets burn a special fuel in a combustion chamber and create pressure that has only one direction to go. This direction of the pressure is out of the nozzle on the bottom of the rocket, the great pressure of the rapidly expanding gas causes an action of pressure on the ground. The opposite action is the rocket moving in the opposite direction. Some experiments have been tried with other rockets powered by nuclear power, but researchers have found that this doesn’t provide as much energy. Some small rockets used for recreation also use-pressurized air and water in a sealed compartment.

Model Rocket

Model rockets are the counterparts of full size rockets. These small rockets are mainly used for research and recreation. They are a lot cheaper than the rockets at Cape Canaveral and they only weigh 31/2 pounds (1.5 kilograms) or less. These rockets are only about 8-24inches (20-40 centimeters). All model rocket engines use solid fuel (or water and air pressure on water rockets.) Model rockets can reach 2000 feet (610 meters) in altitude in a few seconds because the rockets can travel at speeds of 300 mph (480 kph).

Aerodynamics

Aerodynamics is the study of how forces act on an object as it moves trough a fluid. Aerodynamic forces act on airplanes, sailboats, motorboats, submarines, cars, rockets, busses, and anything that moves through a liquid or gas. Scientists and engineers study these aerodynamic forces for a way to prevent them from hindering the performance (affecting the best operation) of the machine (like oil lubricates gears so there is less friction). These aerodynamic forces affect the movement of the object in many ways and how fast it can travel. The Wright Brothers had to understand aerodynamics before they could succeed in building the first aircraft. Today aircraft manufacturers use the same principles to make their aircraft fly the fastest with the cheapest engine. These principles also affect engineers and architects and the structures that they design with the way the air flows around a building or bridge.

Drag is the main force that affects moving objects. This force resists movement of objects in motion. The shape of the object influences the amount of drag. Although drag cannot be eliminated it can be reduced. Objects shaped to produce the littlest amount of drag possible are called a streamlined or aerodynamically clean object. Aircraft designers design planes that produce the least amount of drag possible because planes with low drag need less engine power to fly at the same speed. Automobiles, trucks, planes, trains, rockets, boats and all other vehicles in motion encounter or are affected by drag. There are two types of drag that exist that affect all moving objects, friction drag and form drag. There is a third type of drag called induced drag, but it only affects objects that create lift. There is still another drag that affects aircraft and other objects going faster than the speed of sound.

Friction drag occurs next to the surface of an object and is produced in a thin layer of air called the boundary layer. The friction results when one layer of fluid slides over another layer of fluid. Molecules of air in the boundary layer either have an ordinary path parallel to the surface or an irregular path. Engineers call an ordinary path laminar flow and an irregular path turbulent flow. A turbulent flow increases friction drag. The boundary layer usually has a laminar flow, but the airflow can become turbulent at some point as the air moves along the abject. Aircraft designers try to delay the change of laminar flow to turbulent flow for as long as possible to reduce the friction drag.

Form drag occurs when the airflow past an object breaks away from the object. This type of drag produces swirling eddies that takes energy from an object that slows it down. Form drag occurs with non-streamlined objects like a large semi truck at a high speed. The driver may experience a rough ride due to the eddies from the non-streamlined truck. To stop this occurring to aircraft, which need to fly fast, airline companies put vortex generators on an airplane’s wing, which keep the boundary layer from breaking away from the wing. They are small devices that are shaped like airfoils that stick up along the top of the main wing in rows. The vortex generators produce small disturbances in the boundary layer that keeps the air from breaking away.



BIBLIOGRAPHY

Cliff, Eugene M. "Rocket," World Book Encyclopedia. 1999. Volume R, #16. Pg. 384-391

Estes Industries "Beginners Guide to Model Rocketry"

Heimber, Charles H. and Price, Jack. Focus on Physical Science. Merrill Publishing Company 1987. Pg. 12-27

Miller, Patrick J. "Rocket, Model," World Book Encyclopedia. 1999. Volume R, #16. Pg. 391-393

Platkin, Allen. "Aerodynamics," World Book Encyclopedia. 1999. Volume A, #1. Pg. 85-88

Stine, G. Harry. Handbook of Model Rocketry. John Wiley & Sons Inc. 1994. Pg. 2-9

________________________________________



ACKNOWLEDGEMENTS

This science project couldn’t have been possible without the help and assistance of several people. I would like to thank and acknowledge each of them for their help.

My father for devoting lots of time and effort even though I procrastinated he still helped me to the finish.

My mother for helping me to right my journal and give me support.

Mr. Kenneth Newkirk for not only helping me, but the rest of the class in completing their science projects, even when he had more important things to do.

________________________________________

Selamat Menyambut hari Raya AidilFitri

Kepada peminat2 roket air, saya mengucapkan selamat menyambut hari raya aidil fitri yang bakal tiba nanti. Saya sekarang sedang bercuti di Terengganu sehingga 16/9. Sebarang tempahan pelancar roket air hanya dapat disiapkan/dihantar selepas tarikh tersebut.

harap maklum..
Tq

Isnin, 6 September 2010

Power point slide show

Satu penerangan yang menarik dari 'Quasar the Areo Club' berkaitan dengan teori penerbangan dan roket air sila klik pautan di bawah untuk memuat turun dan mengetahui dengan lebih lanjut

Power point slide show

tq

Ahad, 5 September 2010

Double Rocket

Double Rocket



The first advanced project is a double pressure chamber. This double rocket is a 3-liter pressure chamber. Two 1.5 liter bottles are joined by a small tyre valve rod. I found several versions of these plans online, but the best, and I suppose the original plans should be credited as "The Robinson Coupling". The hardest part of this project is sealing the joint where the couple is located. The air pressure inside the container needs to hold at 60 -100 psi. I still looking the best sealent/glue that can be used to avoid air from coming out from the the joint where the couple is located. So far I have found that Sally glue (can get from GIANT store) is flexible and strong enough to hold the seal. Be patient, the adhesive needs at least 24 hours to cure. Don't pressure test until then. But that glue still cannot hold the pressure up to 100 psi. I still looking the suitable glue to solve this problem.



The coupler can be made one of two ways. Either by joining bottom to bottom, or bottom to top. I will describe the joining bottom to top because it is easy to do it compare the joining bottom to bottom.

PARTS LIST:



(1) Tyre valve

(3) Nuts

(2) rubber Washers (can made from bicycle tube)

(1) 1.5 liter bottle cap

Teflon tape

Building the "Valve Coupler"


Start by carefully drilling a small hole in the bottom of the 2-liter pressure chamber and the bottle cap. The tyre valve should just barely fit into the holes. Be careful not to remove the blue plastic gasket at the bottom of the bottle cap. (It will help seal the joint in the end.) Dry fit all parts to make sure it will work before you go any further.

Wrap the tyre valve with a couple layers of Teflon tape. Thread one of the hex nuts onto the stem of the tyre valve until you get to the half way point. Set aside.

Carefully push the first rubber washer(can made from bicycle tube) into the neck of the main pressure chamber. You will need to use a socket and wrench with one or two socket extensions to reach the bottom of the bottle. Balance a nut and the washer on the head of the socket and place the threaded tyre valve into the hole from the top down. With the skill of a surgeon, drive the nut and washer onto the rod. Tighten with a wrench on the outside surface. (At his point you could add a small dab of Sally glue to seal.

It will be necessary to shave down the second rubber washer to fit inside the bottle cap. The second bottle must be able to screw into the cap all the way down to the gasket. Sometimes the washer sticks out too much. Apply the washer and the nut and test fit the second bottle to make sure it seats well. If the second bottle sits crooked, then it is hitting the washer. Remove assembly and shave the washer again. Once you have the right fit, tighten the entire assembly.

Selasa, 17 Ogos 2010

Penyambungan 2 botol untuk dijadikan badan roket air

Salam 1 malaysia,

Selamat menunaikan ibadat puasa bagi peminat2 roket air yang beragama islam.

Kali ini saya akan memperkenalkan satu kaedah untuk menyambungkan 2 botol minuman untuk dijadikan badan roket air. Kaedah ini dinamakan teknik peyambungan injap. Peralatan yang diperlukan adalah: 'valve' tayar motorsikal/basikal, paku lebih kecil sedikit drpd 'valve' tayar, pisau.







Langkah 1
Panaskan paku dan tebuk satu lubang pada bhg bawah botol dengan menggunakan paku panas tersebut. Tebukkan satu lagi lubang pada penutup botol minuman tersebut menggunakan kaedah yang sama seperti di atas.

Langkah 2
Kemaskan lubang yang di tebuk dengan menggunakan pisau supaya 'valve' tayar dapat masuk melaluinya. Pastikan lubang tersebut sama saiz dengan 'valve' supaya angin tidak dapat keluar melaluinya semasa angin dimasukkan ke dalam botol.

Langkah 3
Bagi mengelakkan
Masukkan 'valve' dari bahagian dalam botol(peringkat ini memerlukan kesabaran kerana agak sukar memasukkan valve dari bhg dalam botol, saya masih lg sedang memikirkan apakah alat yg sesuai digunakan utk memasukkan 'valve' dari bhg dalam botol  sehingga keluar). Bagi mengelakkan sambungan yang dibuat daripada angin terkeluar semasa pelancaran, ambil tiub basikal dan letakkan pada bahagian atas sambungan dan bawah sambungan.

Selamat mencuba.......semoga berjaya.

Isnin, 2 Ogos 2010

Tempahan Pelancar Roket Air

Salam 1 Malaysia,

Untuk makluman semua saya masih lagi mempunyai 8 set pelancar yang sudah siap dihasilkan dan sedia untuk penghantaran bila-bila masa sahaja. Bagi mereka yang berminat sila hubungi saya untuk tempahan (013-7394353). Harga masih lagi RM150/unit termasuk kos penghantaran.

Siapa cepat dia dapat......tq

azmi j

Bottle Rocket Designs...?

Q: In science class we are using 1.5 liter bottles for bottle rockets. We have to add on to the bottle (nose cone, fins, ect.) to make it stay in the air longer. Any suggestions? And what kind of material should each thing be built out of?


Also, how much water should the bottle be filled with?

Answer
This is fun. I just helped my son with his bottle rocket for science. Two critical areas of the rocket for success are the nose cone/parachute and the stability (getting the center of mass well forward of the center of aerodynamic drag. There is an easy test you can perform to check drag. Of course, fins are one method of moving the aerodynamic drag back and the nose cone moves the center of balance forward.



The biggest advance we found was using a compression plate for the nose cone. We used a cottage cheese container lid glued onto the base of the bottle to set the nose cone into. My son had concerns about the edge of the lip of the lid catching the air and pressurizing the nose cone as the rocket ascended, so we made exhaust holes to match up with the relief between the bumps on the bottom of the bottle. This makes use of the venturi effect to keep the nose cone firmly locked on until the rocket reaches its apex.


The nose cone has to be constructed so that it will tip off at less than a 45 degree tip angle. W placed 6 pennies (hot glued into the lid of the nose cone for additional mass forward and to help tip the nose cone off. His competition required that the nose cone, parachute and all parts of the rocket remain together is less than linear ft of length when deployed. So the nose cone also has a line tethering it to the rocket, as does the parachute. But we used an elastic shock cord to reduced damage to the rocket and parachute. This shock cord is tied through the compression plate.


For the parachute we used the thinnest clear trash bag we could find. Cut a 42" circle with a 2" circular vent in the center. This helps the efficiency o the parachute by keeping air flowing through the parachute but with lots of drag. If you don't have the vent, you can get a pillow of stale air stuck under the parachute and the whole thing comes down too quickly.


For stability, first you want to find the center of mass. Tape the nose cone with the parachute onto the rocket. Take a string and tie it around your rocket. Slide the string toward the nose or tail until the balance point is found and the rocket hangs horizontal to the ground. Mark this point with a permanent marker +M. Now to locate the aerodynamic center of drag. This is a bit more difficult. The rocket needs to be held horizontal over a pivot point. A short piece of wood trim with a 2-3 ft. dowel put in the middle of it forming an upside-down "T" works well. Hang the trim piece by a short string at the end of the dowel. Now you need a large fan. Using scotch tape, tape the rocket body horizontally attached to the trip piece with the location of your best guess of the aerodynamic center of drag located at the dowel point. now suspend the rocket in front of the airflow of the fan 5-8 ft from the fan. The rocket will likely tent to turn in the airflow. If the nose turns to the fan, then reposition the rocket a bit further forward on the pivot. If the tail turns toward the fan, reposition the rocket further back on the pivot. When the rocket is neutral in the air flow and has no tendency to turn toward or away, or just spins freely in the airflow then you have located the center of aerodynamic drag.


This point can be marked with a "+A" The +M should be at least 3-4" forward of the +A for good stability. Adding fins will

move the aerodynamic center of drag to the rear of the rocket. You can now do a quick check of the stability of your rocket. tie the same string you used for the center of mass test at the center of mass so the rocket hangs horizontal. Then put the rocket in front of the same fan you used previously. The rocket should point into the fan in a very stable fashion.


You will likely need to add fins. Be careful a this point. There should be constraints on where the fins can be. Check with your teacher. Thin plastic,as used in these cheap disposable cutting boards works well. Or if you can get thin balsa wood at a craft store you can cut any shape of fin that you want. Keep in mind that you want as much of the area of the fins as far back as possible. Unfortunately, the curve of the bottle near the neck makes mounting the fins challenging. That is why sloped or angled fins may work best. They will mount just forward of the curve of the bottle, but extend well to the rear of the curved part of the bottle all the way to the mouth of the bottle. Again, be careful of the constraints for clearances for the launch pad and pressure fitting. We had to keep out of the curved area of the bottle within the cylinder defined by the rest of the bottle, and the fins could not extend beyond the opening of the bottle.


Adhesive for the fins is critical. You cannot use hot glues or any solvent glues that molecularly bond with the plastic of the bottle. This could compromise the strength of the bottle and cause an explosion hazard on the launch pad when the bottle gets pressurized.

Good luck and have fun!

Ahad, 1 Ogos 2010

FLIGHT OF A WATER ROCKET

Flying model rockets is a relatively safe and inexpensive way for students to learn the basics of forces and the response of a vehicle to external forces. A model rocket is subjected to four forces in flight; weight, thrust, and the aerodynamic forces, lift and drag. The relative magnitude and direction of the forces determines the flight trajectory of the rocket.

On this page we show the events in the flight of a water rocket. Water rockets are among the simplest type of rocket that a student encounters. The body of the rocket is an empty, plastic, two-liter soda bottle. Cardboard or plastic file fins are attached to the bottom of the bottle for stability, and a fairing and nose cone are added to the top as a payload.

Prior to launch, the body of the rocket is filled with water to some desired amount, normally about 1/3 of the volume. The rocket is then mounted on a launch tube which is quite similar to that used by a compressed air rocket. Air is pumped into the bottle rocket to pressurize the bottle and thrust is generated when the water is expelled from the rocket through the nozzle at the bottom. Like a full scale rocket, the weight of the bottle rocket is constantly changing during the powered ascent, because the water is leaving the rocket. As the water leaves the rocket, the volume occupied by the pressurized air increases. The increasing air volume decreases the pressure of the air, which decreases the mass flow rate of water through the nozzle, and decreases the amount of thrust being produced. Weight and thrust are constantly changing during the powered portion of the flight. When all of the water has been expelled, there may be a difference in pressure between the air inside the bottle and the external, free stream pressure. The difference in pressure produces an additional small amount of thrust as the pressure inside the bottle decreases to ambient pressure. When the pressures equalize, there is no longer any thrust produced by the rocket, and the rocket begins a coasting ascent.

The remainder of the flight is quite similar to the flight of a ballistic shell, or a bullet fired from a gun, except that aerodynamic drag alters the flight trajectory. The vehicle slows down under the action of the weight and drag and eventually reaches some maximum altitude which you can determine using some simple length and angle measurements and trigonometry. The rocket then begins to fall back to earth under the power of gravity. Bottle rockets may include a recovery system like a parachute, or a simple detachment of the payload section, as shown in the figure. After recovering the rocket, you can fly again.

On the graphic, we show the flight path as a large arc through the sky. Ideally, the flight path would be straight up and down; this provides the largest maximum altitude. But water rockets often turn into the wind during flight because of an effect called weather cocking. The effect is the result of aerodynamic forces on the rocket and cause the maximum altitude to be slightly less than the optimum. The parabolic arc trajectory also occurs if the launch platform is tilted and the rocket is launched at an angle from the vertical.

Sumber : NASA water rocket article.

Jumaat, 30 Julai 2010

Pertandingan Teknologi Pelancaran Roket Prgkt Negeri Johor 2010

Pautan di bawah merupakan gambar2 semasa pertandingan teknologi pelancaran roket peringkat negeri johor yang telah berlangsung di daerah Mersing pada 21-22/Julai 2010


Roket payung terjun klik di sini untuk gambar2 lain



Roket Sasaran klik di sini untuk gambar2 lain



Khamis, 29 Julai 2010

Gambar2 semasa pertandingan Teknologi Pelancaran Roket Peringkat Negeri Johor 2010 di Mersing

Harap bersabar. saya ada sedikit masalah utk 'upload' gambar2 semasa pertandingan berlangsung.

gambar2 tersebut akan di upload kan dalam masa terdekat. sila kunjungi semula laman blog ini sedikit masa lagi.

tq

Rabu, 28 Julai 2010

Keputusan Pertandingan Teknologi Pelancaran Roket Prgt Negeri Johor 2010

Tahniah, kepada Daerah Kulai, Daerah Segamat dan Daerah Mersing kerana berjaya mendapat tempat 1,2 dan 3 pertandingan FST peringkat negeri Johor 2010 yang berlangsung di daerah Mersing - SMK Anjung Batu pada 21- 22 Julai yang lalu.

Gambar-gambar semasa pertandingan sedang dimuatnaik. Sila kunjungi laman blog ini beberapa hari lagi. Terima kasih

Khamis, 15 Julai 2010

''Baby Rocket''

Petang semalam pelajar2 saya telah mencuba 'baby rocket -projek terbaru dari mereka. Roket yang dibuat daripada botol minuman 500ml. Mereka telah menghasilkan satu 'baby rocket' paracut yang menarik.

Semasa cubaan pelancaran dibuat didapati 'baby roket' yang dihasilkan tidak dapat menandingi ketinggian roket yang dihasilkan daripada botol 1.5L. Walaubagaimana pun mereka masih lagi mencuba/ber 'eksperimen' dengan mengubah isipadu air, tekanan yang dikenakan, berat muncung dan saiz paracut yang digunakan.'

Semoga berjaya menghasilkan 'baby rocket' yang mantap............

gambar akan dimuatnaikkan kemudian....apabila mereka berjaya menghasilkan 'baby rocket' yang betul2 mantap....

Selasa, 13 Julai 2010

Roket air V7 (reka bentuk terkini) SMK Maokil







Prestasi roket V7 ini sangat membanggakan kerana drpd 10 kali pelancaran 7 kali memasuki bulatan 'eye's bull'  (bltn 1 - bltn5). Berat keseluruhan roket dan kekukuhan sayap perlu diberi perhatian oleh pelajar yang berminat untuk menghasilkannya.

Roket V7 ini akan berputar2 dalam garisan yang lurus menuju ke tempat pendaratan semasa penerbangannya

Selamat mencuba....